
"New" Features in C

Copyright © 2015 by Daniel Saks 1

ACCU 2015

“New” Features in C

Dan Saks

Saks & Associates

www.dansaks.com

1

Abstract

The first international standard for the C programming language

was C90. Since then, two newer standards have been published,

C99 and C11. C99 introduced a significant number of new features.

C11 introduced a few more, some of which have been available in

compilers for some time. Curiously, many of these added features

don’t seem to have caught on. Many C programmers still program

in C90.

This session explains many of these “new” features, including

declarations in for-statements, typedef redefinitions, inline

functions, complex arithmetic, extended integer types, variable-

length arrays, flexible array members, compound literals,

designated initializers, restricted pointers, type-qualified array

parameters, anonymous structures and unions, alignment support,

non-returning functions, and static assertions.

2

"New" Features in C

Copyright © 2015 by Daniel Saks 2

About Dan Saks

Dan Saks is the president of Saks & Associates, which offers

training and consulting in C and C++ and their use in developing

embedded systems.

Dan has written columns for numerous print publications

including The C/C++ Users Journal, The C++ Report, Software

Development, and Embedded Systems Design. He currently writes

the online “Programming Pointers” column for embedded.com.

With Thomas Plum, he wrote C++ Programming Guidelines, which

won a 1992 Computer Language Magazine Productivity Award. He

has also been a Microsoft MVP.

Dan has taught thousands of programmers around the world. He

has presented at conferences such as Software Development and

Embedded Systems, and served on the advisory boards for those

conferences.

3

About Dan Saks

Dan served as secretary of the ANSI and ISO C++ Standards

committees and as a member of the ANSI C Standards committee.

More recently, he contributed to the CERT Secure C Coding Standard

and the CERT Secure C++ Coding Standard.

Dan collaborated with Thomas Plum in writing and maintaining

Suite++™, the Plum Hall Validation Suite for C++, which tests C++

compilers for conformance with the international standard. Pre-

viously, he was a Senior Software Engineer for Fischer and Porter

(now ABB), where he designed languages and tools for distributed

process control. He also worked as a programmer with Sperry

Univac (now Unisys).

Dan earned an M.S.E. in Computer Science from the University of

Pennsylvania, and a B.S. with Highest Honors in Mathematics/

Information Science from Case Western Reserve University.

4

"New" Features in C

Copyright © 2015 by Daniel Saks 3

Legal Stuff

� These notes are Copyright © 2015 by Dan Saks.

� You are free to use them for self study.

� If you’d like permission to use these notes for other purposes,

contact:

Saks & Associates

393 Leander Drive

Springfield, OH 45504-4906 USA

+1-937-324-3601

dan@dansaks.com

5

6

"New" Features in C

Copyright © 2015 by Daniel Saks 4

C Standards Timeline

� 1983: C Standards committee formed.

� 1989: ANSI approved “C89”, the first US C Standard (ANSI

[1989]).

� 1990: ISO approved C89 as “C90”, the first international C

Standard (ISO [1990]).

� 1999: ISO approved “C99”, a revised international C Standard

(ISO [1999]).

� 2011: ISO approved “C11”, the latest international C Standard

(ISO [2011]).

7

Undocumented Identifiers

� The Standard C library uses identifiers to name library

components.

� For example, <stdio.h> declares:

� EOF (a macro)

� FILE (a type)

� printf (a function)

� stdout (an object)

� Implementing a Standard C library requires additional,

undocumented identifiers.

� For example…

8

"New" Features in C

Copyright © 2015 by Daniel Saks 5

Undocumented Identifiers

� The Standard hints that FILE is an alias for a structure type.

� Most implementations define FILE as something like:

typedef struct _iobuf FILE;

� The structure name might be something other than _iobuf.

9

Undocumented Identifiers

� The Standard requires that:

� A compiled module may include any standard header more

than once.

� Including a header a second or third time has no effect.

� For example,

#include <stdio.h>

#include <stdio.h> // OK; no effect

#include <stdio.h> // still OK; still no effect

10

"New" Features in C

Copyright © 2015 by Daniel Saks 6

Undocumented Identifiers

� Most headers use an “include guard” such as:

#ifndef __STDIO_H

#define __STDIO_H

// body of <stdio.h>

#endif

� The Standard doesn’t mandate this approach, but…

� It’s hard to find a compiler that doesn’t do this.

11

Undocumented Identifiers

� What happens if your code declares one of these undocumented

names?

� It won’t compile:

#include <stdio.h>

~~~

struct _iobuf {    // error: invalid redefinition

int m, n;

~~~

};

� How do you avoid such name conflicts?

12

"New" Features in C

Copyright © 2015 by Daniel Saks 7

Reserved Identifiers

� The Standard specifies that certain identifiers are reserved for

the compiler and library implementation.

� This means you shouldn’t use them.

� The burden is on you to know which names to avoid…

13

Reserved Identifiers

� Identifiers with these forms are always reserved:

__reserved // two leading underscores

_Reserved // a leading underscore and uppercase letter

� You should never use names with these forms.

14

"New" Features in C

Copyright © 2015 by Daniel Saks 8

Reserved Identifiers

� Identifiers with this form are reserved at global scope:

_reserved // a leading underscore and lowercase letter

� You can use names with this form, but only for structure

members or local variables:

struct widget {

double _cost; // OK here

};

int f(int i) {

int _size;

~~~

}
15

Preserving Existing C Programs

� C90 had no boolean type.

� C programmers used to define their own, such as:

typedef enum { false, true } bool;

or:

typedef int boolean;

� C99 added a boolean type.

� However, it couldn’t name the type boolor booleanwithout 

“breaking” existing code…

16



"New" Features in C

Copyright © 2015 by Daniel Saks 9

Preserving Existing C Programs

� The standards committee named the new type _Bool.

� _Boolwas a reserved identifier.

� Now, it’s a keyword.

� The C99 header <stdbool.h> defines prettier names as macros:

� bool as an alias for _Bool

� false as an alias for the constant 0

� true as an alias for the constant 1

� You must include <stdbool.h> if you want to use these names.

� C99 and C11 used this tactic with other (new) features.

17

Version Detection

� C90 specifies that Standard C implementations must define:

� __STDC__

� a macro whose value is 1 indicating that the compiler fully 

implements Standard C.

� However, this you can’t use this macro to tell if the compiler 

implements C90, or C99, or C11.

� C99 added another macro…

18



"New" Features in C

Copyright © 2015 by Daniel Saks 10

Version Detection

� The standard macro __STDC_VERSION__ indicates which standard 

the compiler supports. 

� The following code determines whether the compiler supports 

C90, C99 or C11:

#if __STDC_VERSION__ == 201112L

/* it's C11 */

#elif __STDC_VERSION__ == 199901L

/* it's C99 */

#elif __STDC__ == 1

/* it's C90 */

#else

/* it's not standard conforming */

#endif

19

C99 vs. C90

� C99 added many features to C90.

� Many of these features haven’t caught on.

� Many C programmers don’t know these features exist.

� C compiler vendors have been slow to implement some features.

� Here’s some of what you may be missing…

20



"New" Features in C

Copyright © 2015 by Daniel Saks 11

// Comments

� Comments in C90 begin with /* and end with */.

� Comments can span multiple lines.

� C99 added single-line comments that begin with // and end at 

the next newline.

21

Relaxed Declaration Ordering

� C90 doesn’t allow any declarations in a block after the first 

statement in that block.

� C99 lets you intermix declarations and statements within a 

block:

int foo() {

int n;                  // declaration

scanf("%d", &n);        // statement

char *p = malloc(n);    // declaration:

//     OK in C99, but not C90

~~~

}

22

"New" Features in C

Copyright © 2015 by Daniel Saks 12

Declarations in For-Statements

� In C90, the initialization clause in a for-statement can only be an

expression, such as:

for (i = 0; i < n; ++i) {

~~~

}

� The loop-control variable must be declared prior to the for-

statement.

23

Declarations in For-Statements

� In C99, as in C++, the initialization clause can be a declaration.

� In this case, the loop-control variable is local to the loop.

� That is, its scope ends immediately after the statement that’s the 

loop body, as in:

for (int i = 0; i < n; ++i) {

~~~

}

if (i == n) // error: i not declared

~~~

for (int i = n; i > 0; --i) {   // OK: different i

~~~~

}

24

"New" Features in C

Copyright © 2015 by Daniel Saks 13

Typedef Redefinition

� C doesn’t allow multiple definitions for functions and objects.

� However, it does allow multiple declarations:

extern int total; // an object declaration

extern int total; // a benign redeclaration

int foo(int); // a function declaration

int foo(int); // a benign redeclaration

� It also allows macro redefinitions:

#define BUFSIZ 512 // a macro definition

#define BUFSIZ 512 // a benign redefinition

25

Typedef Redefinition

� A header that contains only such declarations doesn’t need an

“include guard”:

// lib.h

#ifndef LIB_H_INCLUDED // don't need ...

#define LIB_H_INCLUDED // any of ...

#define LEVEL 42 // can be redefined

int foo(int); // can be redeclared

char *bar(char const *); // can be redeclared

#endif // this

26

"New" Features in C

Copyright © 2015 by Daniel Saks 14

Typedef Redefinition

� C90 doesn’t allow redefinition of a typedef.

� C99 lets you redefine a typedef, as long as all definitions define

the same type:

typedef int index_type; // OK

typedef int index_type; // OK in C99, but not C90

typedef int ix; // OK

typedef ix index_type; // OK in C99, but not C90

� Such type definitions no longer need include guards in C99.

27

Inline Functions

� Well-written programs are often self documenting.

� For example, this is OK:

if (n % 2 == 0) // if n is even

� This is better:

int even(unsigned n) {

return n % 2 == 0;

}

if (even(n)) // no comment needed

28

"New" Features in C

Copyright © 2015 by Daniel Saks 15

Inline Functions

� Unfortunately, the added overhead of calling and returning from

the function call can degrade performance.

� C programmers traditionally avoid this overhead by using

macros instead of functions:

#define even(n) ((n) % 2 == 0)

if (even(n)) // still no comment needed

� Macros work fine in some cases, but can have problems with side

effects…

29

Inline Functions

� For example,

#define larger_of(x, y) ((x) > (y) ? (x) : (y))

~~~

larger = larger_of(*p++, *q++);

expands to:

larger = ((*p++) >= (*q++) ? (*p++) : (*q++));

� This expansion increments either por q twice and probably 

returns an incorrect value.

30



"New" Features in C

Copyright © 2015 by Daniel Saks 16

Inline Functions

� C99 added support for inline functions, similar to C++:

inline int larger_of(int x, int y) {

return x > y ? x : y;

}

� inline is a keyword in C99.

31

Inline Functions

� A call to an inline function typically generates the code for the 

function body at the point of each call.

� For example, the expression:

larger = larger_of(*p, m);

generates code equivalent to:

larger = *p > m ? *p : m;

� Unlike a macro, an inline function always behaves like a function 

in that…

32



"New" Features in C

Copyright © 2015 by Daniel Saks 17

Inline Functions

� A call to an inline function evaluates each argument exactly once.

� This avoids spurious side effects.

� For example, the call expression:

larger = larger_of(*p++, *q++);

translates into something like:

{

int temp1 = *p++;

int temp2 = *q++;

larger = temp1 > temp2 ? temp1 : temp2;

} // temp1 and temp2 are no longer in scope

33

Inline Functions

� An inline function also behaves like a function in that…

� A program can take the address of an inline function.

� For example, this forces the compiler to generate a non-inline 

copy of larger_of:

int (*pf)(int, int) = &larger_of;

� Calls through pfwon’t expand the function body inline.

� However, calls using larger_of as the function name should 

continue to expand inline.

34



"New" Features in C

Copyright © 2015 by Daniel Saks 18

Inline Functions

� With non-inline functions that have external linkage, you 

typically declare the function in a header:

// my_lib.h

int larger_of(int x, int y);    // do this

� You typically define it in an associated source file:

// mylib.c

int larger_of(int x, int y) {   // do this as well

return x > y ? x : y;

}

35

Inline Functions

� What happens if you define a non-inline external function in a 

header?

// my_lib.h

int larger_of(int x, int y) {   // don't do this

return x > y ? x : y;

}

� If you call that function from more than one source file, then 

you’ll get a link error when you try to link the resulting object 

files together.

� The linker will complain that the function is multiply-defined.

36



"New" Features in C

Copyright © 2015 by Daniel Saks 19

Inline Functions

� In contrast, you should define, not just declare, an inline external 

function in a header:

// my_lib.h

inline int larger_of(int x, int y) {    // do this

return x > y ? x : y;

}

� A compiler can’t expand a function call inline unless it has seen 

the function definition (not just a declaration) prior to the call.

37

Inline Functions

� If necessary, a C99 compiler automatically generates a non-inline 

copy of an inline function…

� …but you must decide beforehand where that non-inline copy 

will go.

� You do this by declaring, but not defining, the inline function in 

some source file, as in:

// larger_of.c

#include "larger_of.h"

int larger_of(int, int);        // do this as well

38



"New" Features in C

Copyright © 2015 by Daniel Saks 20

Inline Functions

� The keyword extern is optional in the function declaration in the 

source file, as in:

int larger_of(int, int);    // OK

extern int larger_of(int, int); // OK

� The declaration may include the keyword inline, but only if the 

keyword extern is there, too:

extern inline int larger_of(int, int); // OK

� However, this is invalid:

inline int larger_of(int, int); // not OK

39

New Integer Types

� A boolean type:

� keyword _Bool

� additional support in <stdbool.h> (as described earlier)

� long long integer types

� signed and unsigned

� additional library functions, such as:

long long int atoll(char const *nptr);

long long int llabs(long long int j);

� additional library support, such as format specifiers:

printf("%lld\n", atoll(s));

40



"New" Features in C

Copyright © 2015 by Daniel Saks 21

Complex and Imaginary Types

� C99 added support for the concept of complex numbers.

� In mathematics, a complex number can have the Cartesian 

(rectangular) form:

x + yi

� Here, x and y are real numbers and i is the imaginary unit such 

that:

i2 = -1

� C supports complex numbers in Cartesian form rather than in an 

alternative polar form, such as reiΘΘΘΘ.

41

Complex and Imaginary Types

� C supports three types with both a real part and an imaginary 

part:

� float _Complex

� double _Complex

� long double _Complex

� C also supports three types with only an imaginary part:

� float _Imaginary

� double _Imaginary

� long double _Imaginary

� The imaginary types are optional.

� Compilers need not implement them.

42



"New" Features in C

Copyright © 2015 by Daniel Saks 22

Complex Arithmetic

� The complex types support:

� the arithmetic operators +, -, *, and /

� the equality operator == and !=

� the simple assignment operator =

� the compound assignment operators +=, -=, *= and /=

� For example,

double _Complex z1, z2, z3, z4;

~~~

z4 = z1 * z2 + z3;

43

<complex.h>

� The standard header <complex.h> makes the complex and

imaginary types a little easier to use.

� The header defines a pair of macros:

� complex, which expands to _Complex

� _Complex_I, which expands to a constant expression of type

float _Complexwhose value is 0 + 1i

� If the compiler implementation supports imaginary types, then

the header also defines macros:

� imaginary, which expands to _Imaginary

� _Imaginary_I, which expands to a constant expression of type

float _Imaginary whose value is 1i.

44

"New" Features in C

Copyright © 2015 by Daniel Saks 23

<complex.h>

� The header also defines another macro:

� I, which expands to a representation of i.

� If the implementation supports imaginary numbers, then I

expands to _Imaginary_I.

� Otherwise, it expands to _Complex_I.

� For example, you can declare a complex number, z, with double

precision whose initial value is 8 + 6i using:

#include <complex.h>

~~~

double complex z = 8 + 6 * I;

45

Complex Arithmetic

� C permits implicit conversion from real types (float, double, and 

long double) to complex types.

� The imaginary part of the resulting complex value is always zero.

� Implicit conversion from complex to real discards the imaginary 

part.

� For example,

double r = 42;

double _Complex z1 = r;     // z1 = 42 + 0 * I;

z1 += 3 * I;                // z1 = 42 + 3 * I;

double d = z1;              // d = 42;

46



"New" Features in C

Copyright © 2015 by Daniel Saks 24

<complex.h>

� <complex.h> provides functions that explicitly return the real and 

imaginary parts of a complex number, as in:

#include <complex.h>

~~~

double complex z = 8 + 6 * I;

printf("%g + %gi\n", creal(z), cimag(z));

� The output is:

8 + 6i

� The header also provides trigonometric, hyperbolic, exponential,

logarithmic, and other functions for complex operands.

47

Exact-Width Integer Types

� C has always allowed each compiler to choose the storage size

and range of values of each integer type.

� For years, C programmers have been defining their own exact-

width types, such as:

typedef char sint8; // 8-bit signed int

typedef unsigned long uint32; // 32-bit unsigned int

� You don’t need to define these yourself (anymore).

� C99 provides a standard set of such typedefs in <stdint.h>…

48

"New" Features in C

Copyright © 2015 by Daniel Saks 25

Exact-Width Integer Types

� <stdint.h> defines exact-width integer types such as:

� int8_t— a signed integer exactly 8 bits wide

� uint8_t— an unsigned integer exactly 8 bits wide

� int16_t— a signed integer exactly 16 bits wide

� uint16_t— an unsigned integer exactly 16 bits wide

� …and so on for 32 and 64

� However, these types are optional.

� These types are widely, but not universally, available.

� For example, the smallest addressable unit on a processor might

be a 32-bit word.

� In that case, <stdint.h> can’t provide valid definitions for int8_t

and int16_t and their unsigned companions.

49

Minimum-Width Integer Types

� Fewer programmers know about and use the minimum-width

types in <stdint.h>, such as:

� int_least8_t — the smallest signed integer type that’s at least

8 bits wide

� uint_least8_t — the smallest unsigned integer type that’s at

least 8 bits wide

� int_least16_t — the smallest signed integer type that’s at

least 16 bits wide

� uint_least16_t — the smallest unsigned integer type that’s at

least 16 bits wide

� …and so on for 32 and 64.

� These types are required.

� These types may satisfy your needs, and may be more portable.

50

"New" Features in C

Copyright © 2015 by Daniel Saks 26

Fastest Integer Types

� Also available are:

� int_fast8_t — the fastest signed integer type that’s at least 8

bits wide

� uint_fast8_t — the fastest unsigned integer type that’s at

least 8 bits wide

� int_fast16_t — the fastest signed integer type that’s at least

16 bits wide

� uint_fast16_t — the fastest unsigned integer type that’s at

least 16 bits wide

� …and so on for 32 and 64.

� These types are also required.

� In some cases, one of these types is what you really want.

51

Other Extended Integer Types

� <stdint.h> defines greatest-width integer types:

� intmax_t is a signed integer type that can hold the value of any

signed integer.

� uintmax_t is an unsigned integer type that can hold the value

of any unsigned integer.

� These types are required.

52

"New" Features in C

Copyright © 2015 by Daniel Saks 27

Other Extended Integer Types

� <stdint.h> might define integer types capable of holding pointers

to objects (not pointers to functions):

� intptr_t is a signed integer that can hold the value of a pointer

to an object.

� uintptr_t is an unsigned integer that can hold the value of a

pointer to an object.

� These types are optional:

� <stdint.h> can’t provide intptr_t on a platform where:

sizeof(void *) > sizeof(intmax_t)

53

Variable-Length Arrays (VLAs)

� This declares x to be an “array with n elements of T”:

T x[n];

� In C90, the array dimension, n, must be a constant expression.

� That is, the compiler must be able to determine n’s value at

compile time.

� C90 rejects this declaration unless n is a constant.

54

"New" Features in C

Copyright © 2015 by Daniel Saks 28

Variable-Length Arrays (VLAs)

� In C90, if you want to create an array with a dimension computed

at run time, you typically do something like:

void f(size_t n) {

int *x = malloc(n * sizeof(int));

for (size_t i = 0; i < n; ++i) {

// do something with each x[i]

}

free(x);

}

� You have to remember to call free to avoid a memory leak.

55

Variable-Length Arrays (VLAs)

� Using this technique with multi-dimension arrays is

cumbersome:

void f(size_t m, size_t n) {

int *x = malloc(m * n * sizeof(int));

for (size_t i = 0; i < m; ++i)

for (size_t j = 0; j < n; ++j) {

// do something with each x[n * i + j]

}

free(x);

}

� This is easy to get wrong.

56

"New" Features in C

Copyright © 2015 by Daniel Saks 29

Variable-Length Arrays (VLAs)

� C99 introduced variable-length arrays (VLAs) to simplify using

arrays with non-constant dimensions:

void f(size_t m, size_t n) {

int x[m][n]; // a VLA

for (size_t i = 0; i < m; ++i)

for (size_t j = 0; j < n; ++j) {

// do something with each x[i][j]

}

}

� With a VLA, you don’t need malloc and free to manage the array

storage.

57

Variable-Length Arrays (VLAs)

� VLAs can be parameters:

void f(size_t m, size_t n, int x[m][n]) {

for (size_t i = 0; i < m; ++i)

for (size_t j = 0; j < n; ++j) {

// do something with each x[i][j]

}

}

int main() {

int a[6][8];

~~~

f(6, 8, a);

~~~

}
58

"New" Features in C

Copyright © 2015 by Daniel Saks 30

Variable-Length Arrays (VLAs)

� If x is a VLA , sizeof(x) is not a constant expression.

� That is, it may not be computable at compile time.

� If x is anything other than a VLA, sizeof(x) is a constant

expression.

� A VLA declaration can appear only in:

� a function parameter list, or

� a function body.

� A VLA can’t be declared extern or static.

� Interestingly,

� In C99, VLAs are a required feature.

� In C11, VLAs are merely optional.

59

Flexible Array Members

� Suppose you need to build packet-like structures with:

� a fixed-format header, and

� a trailing variable-length data sequence.

� Unfortunately, you can’t use a VLA:

typedef struct packet packet;

struct packet {

header h;

data d[n]; // No: n must be constant expression

};

� VLAs can’t be structure members.

60

"New" Features in C

Copyright © 2015 by Daniel Saks 31

Flexible Array Members

� The conventional approach in C90 is to define the data portion of

the packet as an array whose dimension is 1:

typedef struct packet packet;

struct packet {

header h;

data d[1];

};

� To allocate storage for a packet with ndata values, you might try:

packet *p = malloc(sizeof(header) + n * sizeof(data));

� However, this might not work…

61

Flexible Array Members

� There might be padding within the structure:

struct packet {

header h; might be padding in there

data d[1];

};

� In that case, computing the packet size is more complicated:

packet *p

= malloc(offsetof(packet, d) + n * sizeof(data));

� offsetof(t, m) (defined in <stddef.h>) returns the offset in bytes

of member m from the beginning of structure type t.

62

"New" Features in C

Copyright © 2015 by Daniel Saks 32

Flexible Array Members

� In C99, the last member of a structure can be an array with

unspecified dimension:

typedef struct packet packet;

struct packet {

header h;

data d[]; // OK in C99: flexible array member

};

� Such a member is called a flexible array member.

63

Flexible Array Members

� The size of a structure with a flexible array member is:

� the size of everything in the structure,

� including any padding,

� up to but not including the flexible array member.

� Using a structure with a flexible array member simplifies

memory size computations:

packet *p = malloc(sizeof(packet) + n * sizeof(data));

64

"New" Features in C

Copyright © 2015 by Daniel Saks 33

Compound Literals

� A literal is a programming language construct that represents a

fixed or invariant value.

� For example, "xyzzy" is a string-literal.

� In C90, if you want a fixed value of a structure type, you have to

create a named constant object:

typedef struct rational rational;

struct rational {

long num, den;

};

~~~

rational const one_half = { 1, 2 };

rational const one_third = { 1, 3 };

65

Compound Literals

� In C99, you can use a compound literal to represent a fixed value 

of a structure type:

typedef struct rational rational;

struct rational {

long num, den;

};

bool rat_eq(rational lo, rational ro) {

return (lo.num == ro.num) && (lo.den == ro.den);

}

rational r;

~~~

if rat_eq(r, (rational){ 1, 2 }) { // compound literal

~~~

}
66



"New" Features in C

Copyright © 2015 by Daniel Saks 34

Compound Literals

� A compound literal can have an array type:

enum { m = 7 }

enum { n = m * sizeof(int) };

int d[m];

~~~

if (memcmp(d, (int [m]) { 8, 6, 7, 5, 3, 0, 9 }, n) == 0)

~~~

67

Compound Literals

� A compound literal type can specify an array of unknown 

dimension.

� In that case, the length of the brace-enclosed list determines the 

array dimension:

if (memcmp(d, (int []) { 8, 6, 7, 5, 3, 0, 9 }, n) == 0)

~~~

7 elements

68

"New" Features in C

Copyright © 2015 by Daniel Saks 35

Designated Initializers

� In C90, a brace-initializer for a union can initialize only the first

member:

typedef union glop glop;

union glop {

int i;

double d;

};

glop g1 = { 10 }; // initializes g1.i with 10

glop g2 = { 12.3 }; // initializes g2.i with 12

� The first member, i, is an int.

� The compiler converts 12.3 from double to int by discarding .3.

� The truncation might trigger a warning.

69

Designated Initializers

� C99 lets you initialize any member of a union by using a

designated initializer:

typedef union glop glop;

union glop {

int i;

double d;

};

glop g1 = { .i = 10 }; // initializes g1.i with 10

glop g2 = { .d = 12.3 }; // initializes g2.d with 12.3

70

"New" Features in C

Copyright © 2015 by Daniel Saks 36

Designated Initializers

� You can use designated initializers with structures to avoid

accidentally writing initial values in the wrong order:

typedef struct date date;

struct date {

int d;

month m;

int y;

};

date flub = {

Nov, 5, 1955 // oops! wrong order

};

date flux = {

.m = Nov, .d = 5, .y = 1955 // OK: no mistake

};
71

Designated Initializers

� You can also use designated initializers with arrays.

� This is especially convenient when you want to:

� initialize only a few elements and

� let the other elements default initialize to zero.

� For example, these two definitions are equivalent:

int x[10] = { 0, 0, 0, 8, 0, 0, 0, 2 };

int x[10] = { [3] = 8, [7] = 2 };

� The latter initializer is easier to get right.

72

"New" Features in C

Copyright © 2015 by Daniel Saks 37

Restricted Pointers

� In C90, <stdlib.h> declared the standard strcpy function as:

char *strcpy(char *s1, const char *s2);

� In C99, the declaration looks like:

char *strcpy(char *restrict s1, const char *restrict s2);

� As with const and volatile, the keyword restrict is a type

qualifier.

� However, restrict can apply only to:

� pointers to object types, or

� pointers to incomplete types.

73

Restricted Pointers

� Pointer aliasing occurs when a program uses two or more

pointers to access the same storage.

� The potential for pointer aliasing inhibits optimizations such as:

� caching memory into CPU registers, or

� reordering memory accesses.

� Declaring a pointer with restrict enables such optimizations.

� For example…

74

"New" Features in C

Copyright © 2015 by Daniel Saks 38

Restricted Pointers

� In C99, memcpy’s pointer parameters are restrict-qualified:

void *memcpy(

void *restrict s1, const void *restrict s2, size_t n

);

� memmove’s pointer parameters are not:

void *memmove(void *s1, const void *s2, size_t n);

� The compiler may assume that memcpy is copying between non-

overlapping objects, and optimize code accordingly.

� It may not do so for memmove.

75

Type-Qualified Array Parameters

� Except when it has a non-constant dimension, an array

declaration in a parameter list dimension actually declares a

pointer.

� That is,

int f(T x[]); // x is a "pointer to T"

means the same as:

int f(T *x); // x is a "pointer to T"

� If the first array dimension is present and constant, the

dimension is simply ignored.

76

"New" Features in C

Copyright © 2015 by Daniel Saks 39

Type-Qualified Array Parameters

� The transformation to pointer type preserves type qualifiers, if

present.

� For example,

int f(T const x[]); // x is a "pointer to const T"

int g(T volatile y[]); // y is a "pointer to volatile T"

means the same as:

int f(T const *x); // x is a "pointer to const T"

int g(T volatile *y); // y is a "pointer to volatile T"

77

Type-Qualified Array Parameters

� In C90, there’s no way to declare an array parameter that’s

equivalent to a pointer parameter with a top-level type qualifier.

� That is, in C90 you can declare:

int f(T *const x); // x is a "const pointer to T"

int g(T *volatile y); // y is a "volatile pointer to T"

� However, C90 offers no way to write this using array notation.

� In C99, you can declare the functions as:

int f(T x[const]); // x is a "const pointer to T"

int g(T y[volatile]); // y is a "volatile pointer to T"

78

"New" Features in C

Copyright © 2015 by Daniel Saks 40

Type-Qualified Array Parameters

� In practice, declaring parameters with top-level const or

volatile qualifiers is not all that useful:

int f(T x[const]); // not all that useful

int g(T y[volatile]); // not all that useful, either

� However, declaring array parameters with top-level restrict

qualifiers is useful:

int f(T x[restrict]); // useful

� It’s equivalent to:

int f(T *restrict x); // useful

79

__func__

� C99 provides a predefined identifier, __func__.

� It’s not a macro.

� Within each function body, it’s an implicitly declared object.

� Its value is the function name as a null-terminated character

sequence.

� It’s as if the following declaration appeared immediately after the

opening brace in each function definition:

static char const __func__[] = "function-name";

� __func__ can appear only inside a function definition.

� For example, you can use __func__ to implement simple function

call tracing…

80

"New" Features in C

Copyright © 2015 by Daniel Saks 41

__func__

#define enter() printf("enter: %s\n", __func__)

#define leave() printf("leave: %s\n", __func__)

void foo() {

enter();

~~~

leave();

}

void bar() {

enter();

~~~

leave();

}

81

C11 vs. C99

� Compared to C99, C11 adds many fewer features.

� Your compiler might not implement all of them yet.

� Here’s a sampling of some features that are already available

somewhere…

82

"New" Features in C

Copyright © 2015 by Daniel Saks 42

Conditional Features

� C11 classifies certain features as conditional.

� A compiler need not implement a conditional feature.

� Moreover, the compiler must define a standard object-like macro

to indicate that it doesn’t implement the feature.

� For example, these macros include:

� __STDC_NO_COMPLEX__

� If this macro is defined, the implementation doesn’t support

complex types or the <complex.h> header.

� __STDC_NO_VLA__

� If this macro is defined, the implementation doesn’t support

variable length arrays.

83

Anonymous Structures and Unions

� Suppose your application employs two-dimensional shapes.

� Each shape contains some linear or angular distances that

characterize the physical extent of the shape:

� a circle has a radius

� a rectangle has a height and a width

� a triangle has side1, side2 and an angle

� etc.

� The shapes may also have common attributes, such as:

� position (planar coordinates)

� outline and fill colors

84

"New" Features in C

Copyright © 2015 by Daniel Saks 43

Anonymous Structures and Unions

� Here’s a fairly traditional C implementation of the shape type:

typedef struct shape shape;

struct shape {

coordinates position;

color outline, fill;

shape_kind kind; // discriminator

union { // discriminated union

circle_part circle;

rectangle_part rectangle;

triangle_part triangle;

} u; // union member name

};

85

Anonymous Structures and Unions

� A union paired with a value that indicates the active member of

the union is called a discriminated union.

� The discrete value is called a discriminator.

� In C90, the union member (on the previous slide) must have a

name.

� We don’t need the name other than to make the compiler happy.

� So we usually give it a short name, such as u.

� Still, it clutters up the code, as in…

86

"New" Features in C

Copyright © 2015 by Daniel Saks 44

Anonymous Structures and Unions

double shape_area(shape const *s) {

switch (s->kind) {

case sk_circle:

return PI * s->u.circle.radius

* s->u.circle.radius;

case sk_rectangle:

return s->u.rectangle.height

* s->u.rectangle.width;

case sk_triangle:

return sin(s->u.triangle.angle)

* s->u.triangle.side1

* s->u.triangle.side2 / 2;

}

return -1;

}
87

Anonymous Structures and Unions

� C11 now permits anonymous structures and unions as structure

or union members:

struct shape {

~~~

shape_kind kind;

union {                 // anonymous union

circle_part circle;

~~~

}; // no union member name

};

� You can reference members of an anonymous structure or union

as if they were members of the enclosing structure or union…

88

"New" Features in C

Copyright © 2015 by Daniel Saks 45

Anonymous Structures and Unions

double shape_area(shape const *s) {

switch (s->kind) {

case sk_circle:

return PI * s->circle.radius * s->circle.radius;

case sk_rectangle:

return s->rectangle.height * s->rectangle.width;

case sk_triangle:

return sin(s->triangle.angle)

* s->triangle.side1 * s->triangle.side2 / 2;

}

return -1;

}

� The wavy underline indicates where u.used to be.

89

Alignment Support

� Multibyte objects often have an alignment.

� The C Standard defines alignment as a:

� “requirement that objects of a particular type be located on

storage boundaries with addresses that are particular

multiples of a byte address”.

� Each target processor specifies its own alignment requirements.

� 4-byte integers and pointers are often “word aligned” (at an

address that’s a multiple of 4).

� 8-byte floating point numbers might be:

� word aligned, or

� double-word aligned (at an address that’s a multiple of 8).

90

"New" Features in C

Copyright © 2015 by Daniel Saks 46

Alignment Support

� A program that accesses a misaligned object produces undefined

behavior.

� Possible outcomes include:

� the processor issues a trap, or

� the program executes properly, but more slowly than if the

data were properly aligned.

� An object whose address requirement is a higher multiple than

another is said to have a stricter alignment.

� For example, double-word (=8) alignment is stricter than word

(=4) alignment.

� Character objects always have a size of 1 (by definition).

� They have no alignment requirement.

91

Alignment Support

� For some tasks, it helps to have a type that’s as strictly aligned as

any on the current platform.

� Here’s a common C99 way to define that type:

typedef union max_align_t max_align_t;

union max_align_t {

long long int lli;

long double ld;

void *pv;

void (*pfvv)(void);

};

� C11 now defines max_align_t for you in <stddef.h>.

92

"New" Features in C

Copyright © 2015 by Daniel Saks 47

Alignment Support

� Again, character types have no alignment requirement.

� This could be aligned on any boundary:

char buffer[BUFSIZ];

� If you want to align the buffer to a particular boundary, you can

declare it as a member of a union with an aligned member:

union {

int i; // force word alignment

char buffer[BUFSIZ];

} aligned;

93

Alignment Support

� To simplify alignment operations, C11 provides two new

keywords, _Alignas and _Alignof.

� Standard header <stdalign.h> makes them look nicer:

#define alignas _Alignas

#define alignof _Alignof

94

"New" Features in C

Copyright © 2015 by Daniel Saks 48

Alignment Support

� alignof is an operator much like sizeof.

� alignof(T) yields an integer constant whose value is the

alignment of type T:

� Tmust be a complete object type.

� The alignment of an array is the alignment of its element type.

� For example, here’s how you can advance a “pointer to char” to

the next address aligned for accessing an int:

char *p;

~~~

while ((uintpr_t)p % alignof(int) != 0)

++p;

95

Alignment Support

� Whereas alignof is an operator for use in expressions…

� alignas is a specifier for use in declarations.

� For example, this declares a character array aligned as an int:

alignas(int) char buffer[BUFSIZ];

� You can also specify the alignment as an integer constant.

� The above declaration is equivalent to:

alignas(alignof(int)) char buffer[BUFSIZ];

96



"New" Features in C

Copyright © 2015 by Daniel Saks 49

Alignment Support

� The standard header <stdlib.h> declares memory allocation 

functions:

void *calloc(size_t number, size_t size);

void *malloc(size_t size);

void *realloc(void *pointer, size_t size);

� If a call to any of these functions succeeds, it returns a pointer 

whose value is aligned so that:

� it may be assigned to a pointer to any type of object, and

� it may be used to access such an object or an array thereof in 

the space allocated.

� In practice, it usually means the returned pointer has a value 

aligned to max_align_t.

97

Alignment Support

� In C11, <stdlib.h> also declares:

void *aligned_alloc(size_t alignment, size_t size);

� This function lets you allocate storage at an alignment that’s 

stricter than max_align_t, as in:

char *p = aligned_alloc(256, 4096);

� This allocates 4096 byes on a 256-byte boundary.

98



"New" Features in C

Copyright © 2015 by Daniel Saks 50

Alignment Support

� In general, a call to aligned_alloc has the form:

aligned_alloc(A, S)

� It allocates storage of size S aligned to boundary A.

� The behavior is undefined if:

� A isn’t a valid alignment supported by the implementation, or

� the S isn’t an integral multiple of A.

99

Non-Returning Functions

� Some functions never return to their caller.

� C11 provides the keyword _Noreturn to declare such functions.

� The standard header <stdnoreturn.h> makes it look a little nicer:

#define noreturn _Noreturn

� For example, the standard library now declares the abort and 

exit functions as:

_Noreturn void abort(void);

_Noreturn void exit(int status);

100



"New" Features in C

Copyright © 2015 by Daniel Saks 51

Non-Returning Functions

� Using noreturn has these advantages:

� It suppresses compiler warnings on functions that don’t 

return.

� It enables some optimizations.

� The compiler should complain if a function declared with 

noreturnmight return nonetheless.

� For example, this might return if status is nonnegative:

noreturn void bail(int status) {

if (status < 0) {

// do some cleanup

exit(EXIT_FAILURE);

}

}

101

Static Assertions

� The assertmacro is defined in the standard header <assert.h>.

� Calling assert(e) expands to code that tests the value of 

expression eat run time:

� If e is true (non-zero):

� nothing happens.

� If e is false (zero), the program:

� writes a diagnostic message to stderr, and

� aborts execution by calling the standard abort function.

102



"New" Features in C

Copyright © 2015 by Daniel Saks 52

Static Assertions

� For example, suppose you have an enumeration type defined as:

enum rating { worst, poor, okay, good, best };

� Suppose the program assumes that the range from worst to best

doesn’t exceed 7.

� Violating that constraint could lead to a subtle bug.

� Rather than let the program fail in some subtle way, you can force 

an overt failure:

assert(best - worst <= 7);

103

Static Assertions

� With most compilers, an assert failure message looks something 

like:

assert failed: condition, file file.c, line n

� assertwrites to stderr.

� It may be useless in environments that lack support for the C file 

system.

� However, you can “roll your own” version of assert:

� Copy the macro from <assert.h> to your own header.

� Change the way it reports the failure.

104



"New" Features in C

Copyright © 2015 by Daniel Saks 53

Static Assertions

� Again, this assertion catches the constraint violation:

assert(best - worst <= 7);

� However:

� It executes at run time.

� It should be done at compile time.

� An assert call is an executable expression.

� It can appear only within a function.

105

Static Assertions

� Not every assertion can be checked statically (at compile time).

� An assertion that tests the value of a variable must be done 

dynamically (at run time).

� However, an assertion that tests the value of a constant 

expression can be done at compile time.

� For example, these can be tested statically:

� the size or alignment of an object

� the offset of a structure member

� the value of an enumeration constant

106



"New" Features in C

Copyright © 2015 by Daniel Saks 54

Static Assertions

� C11 adds the keyword _Static_assert to support static 

assertions.

� A static_assert-declaration has the form:

_Static_assert(e, s);

� If constant expression e converted to _Bool is true, the 

declaration has no effect.

� Otherwise, the compiler generates a diagnostic message 

containing string literal s, and the program fails to compile.

� A static_assert-declaration is a declaration.

� It can appear anywhere that any other declaration can appear.

107

Static Assertions

� The standard header <assert.h> provides a macro that makes 

static assertions more pleasing to the eye:

#define static_assert _Static_assert

� For example, you can test the range of the enumerators using a 

static assertion such as:

static_assert(

best - worst <= 7,

"best shouldn't be more than 7 greater than worst"

);

108



"New" Features in C

Copyright © 2015 by Daniel Saks 55

No More gets

� Nearly all the differences between C11 and C99 are features that 

C11 added.

� However, C11 did remove one function from the standard library.

� In C11, <stdio.h> no longer declares:

char *gets(char *s);

� The function was just too unsafe:

� It could easily cause an undetected buffer overrun.

� In place of gets, use:

char *fgets(

char *restrict s, int n, FILE *restrict stream

);
109

Bibliographic References

� ANSI [1989]. ANSI X3.159-1989, Programming Language C.

� ISO [1990].  ISO/IEC Standard 9899:1990, Programming 

languages—C.

� ISO [1999].  ISO/IEC Standard 9899:1999, Programming 

languages—C.

� ISO [2011].  ISO/IEC Standard 9899:2011, Programming 

languages—C.

110



"New" Features in C

Copyright © 2015 by Daniel Saks 56

111

112


