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Abstract

The first international standard for the C programming language 

was C90.  Since then, two newer standards have been published, 

C99 and C11.  C99 introduced a significant number of new features.  

C11 introduced a few more, some of which have been available in 

compilers for some time.  Curiously, many of these added features 

don’t seem to have caught on.  Many C programmers still program 

in C90.

This session explains many of these “new” features, including 

declarations in for-statements, typedef redefinitions, inline 

functions, complex arithmetic, extended integer types, variable-

length arrays, flexible array members, compound literals, 

designated initializers, restricted pointers, type-qualified array 

parameters, anonymous structures and unions, alignment support, 

non-returning functions, and static assertions.
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Legal Stuff

� These notes are Copyright © 2015 by Dan Saks.

� You are free to use them for self study.

� If you’d like permission to use these notes for other purposes, 
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Saks & Associates

393 Leander Drive

Springfield, OH 45504-4906 USA

+1-937-324-3601

dan@dansaks.com
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C Standards Timeline

� 1983: C Standards committee formed.

� 1989: ANSI approved “C89”, the first US C Standard (ANSI

[1989]).

� 1990: ISO approved C89 as “C90”, the first international C

Standard (ISO [1990]).

� 1999: ISO approved “C99”, a revised international C Standard

(ISO [1999]).

� 2011: ISO approved “C11”, the latest international C Standard

(ISO [2011]).
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Undocumented Identifiers

� The Standard C library uses identifiers to name library 

components.

� For example, <stdio.h> declares:

� EOF (a macro)

� FILE (a type)

� printf (a function)

� stdout (an object)

� Implementing a Standard C library requires additional, 

undocumented identifiers.

� For example…
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Undocumented Identifiers

� The Standard hints that FILE is an alias for a structure type.

� Most implementations define FILE as something like:

typedef struct _iobuf FILE;

� The structure name might be something other than _iobuf.
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Undocumented Identifiers

� The Standard requires that:

� A compiled module may include any standard header more 

than once.

� Including a header a second or third time has no effect.

� For example,

#include <stdio.h>

#include <stdio.h>      // OK; no effect

#include <stdio.h>      // still OK; still no effect
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Undocumented Identifiers

� Most headers use an “include guard” such as:

#ifndef __STDIO_H

#define __STDIO_H

// body of <stdio.h>

#endif

� The Standard doesn’t mandate this approach, but…

� It’s hard to find a compiler that doesn’t do this.
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Undocumented Identifiers

� What happens if your code declares one of these undocumented 

names?

� It won’t compile:

#include <stdio.h>

~~~

struct _iobuf {    // error: invalid redefinition

int m, n;

~~~

};

� How do you avoid such name conflicts?
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Reserved Identifiers

� The Standard specifies that certain identifiers are reserved for 

the compiler and library implementation.

� This means you shouldn’t use them.

� The burden is on you to know which names to avoid…
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Reserved Identifiers

� Identifiers with these forms are always reserved:

__reserved  // two leading underscores

_Reserved   // a leading underscore and uppercase letter

� You should never use names with these forms.
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Reserved Identifiers

� Identifiers with this form are reserved at global scope:

_reserved   // a leading underscore and lowercase letter

� You can use names with this form, but only for structure 

members or local variables:

struct widget {

double _cost;   // OK here

};

int f(int i) {

int _size;

~~~

}
15

Preserving Existing C Programs

� C90 had no boolean type.

� C programmers used to define their own, such as:

typedef enum { false, true } bool;

or:

typedef int boolean;

� C99 added a boolean type.

� However, it couldn’t name the type boolor booleanwithout 

“breaking” existing code…
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Preserving Existing C Programs

� The standards committee named the new type _Bool.

� _Boolwas a reserved identifier.

� Now, it’s a keyword.

� The C99 header <stdbool.h> defines prettier names as macros:

� bool as an alias for _Bool

� false as an alias for the constant 0

� true as an alias for the constant 1

� You must include <stdbool.h> if you want to use these names.

� C99 and C11 used this tactic with other (new) features.

17

Version Detection

� C90 specifies that Standard C implementations must define:

� __STDC__

� a macro whose value is 1 indicating that the compiler fully 

implements Standard C.

� However, this you can’t use this macro to tell if the compiler 

implements C90, or C99, or C11.

� C99 added another macro…
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Version Detection

� The standard macro __STDC_VERSION__ indicates which standard 

the compiler supports. 

� The following code determines whether the compiler supports 

C90, C99 or C11:

#if __STDC_VERSION__ == 201112L

/* it's C11 */

#elif __STDC_VERSION__ == 199901L

/* it's C99 */

#elif __STDC__ == 1

/* it's C90 */

#else

/* it's not standard conforming */

#endif

19

C99 vs. C90

� C99 added many features to C90.

� Many of these features haven’t caught on.

� Many C programmers don’t know these features exist.

� C compiler vendors have been slow to implement some features.

� Here’s some of what you may be missing…
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// Comments

� Comments in C90 begin with /* and end with */.

� Comments can span multiple lines.

� C99 added single-line comments that begin with // and end at 

the next newline.

21

Relaxed Declaration Ordering

� C90 doesn’t allow any declarations in a block after the first 

statement in that block.

� C99 lets you intermix declarations and statements within a 

block:

int foo() {

int n;                  // declaration

scanf("%d", &n);        // statement

char *p = malloc(n);    // declaration:

//     OK in C99, but not C90

~~~

}
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Declarations in For-Statements

� In C90, the initialization clause in a for-statement can only be an 

expression, such as:

for (i = 0; i < n; ++i) {

~~~

}

� The loop-control variable must be declared prior to the for-

statement.

23

Declarations in For-Statements

� In C99, as in C++, the initialization clause can be a declaration.

� In this case, the loop-control variable is local to the loop.

� That is, its scope ends immediately after the statement that’s the 

loop body, as in:

for (int i = 0; i < n; ++i) {

~~~

}

if (i == n)                     // error: i not declared

~~~

for (int i = n; i > 0; --i) {   // OK: different i

~~~~

}

24
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Typedef Redefinition

� C doesn’t allow multiple definitions for functions and objects.

� However, it does allow multiple declarations:

extern int total;       // an object declaration   

extern int total;       // a benign redeclaration

int foo(int);           // a function declaration

int foo(int);           // a benign redeclaration

� It also allows macro redefinitions:

#define BUFSIZ 512      // a macro definition

#define BUFSIZ 512      // a benign redefinition

25

Typedef Redefinition

� A header that contains only such declarations doesn’t need an 

“include guard”:

// lib.h

#ifndef LIB_H_INCLUDED      // don't need ...

#define LIB_H_INCLUDED      // any of ...

#define LEVEL 42            // can be redefined

int foo(int);               // can be redeclared

char *bar(char const *);    // can be redeclared

#endif // this

26
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Typedef Redefinition

� C90 doesn’t allow redefinition of a typedef.

� C99 lets you redefine a typedef, as long as all definitions define 

the same type:

typedef int index_type;     // OK

typedef int index_type;     // OK in C99, but not C90

typedef int ix;             // OK

typedef ix index_type;      // OK in C99, but not C90

� Such type definitions no longer need include guards in C99.
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Inline Functions

� Well-written programs are often self documenting.

� For example, this is OK:

if (n % 2 == 0)         // if n is even

� This is better:

int even(unsigned n) {

return n % 2 == 0;

}

if (even(n))            // no comment needed
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Inline Functions

� Unfortunately, the added overhead of calling and returning from 

the function call can degrade performance.

� C programmers traditionally avoid this overhead by using 

macros instead of functions:

#define even(n) ((n) % 2 == 0)

if (even(n))            // still no comment needed

� Macros work fine in some cases, but can have problems with side 

effects…
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Inline Functions

� For example,

#define larger_of(x, y) ((x) > (y) ? (x) : (y))

~~~

larger = larger_of(*p++, *q++);

expands to:

larger = ((*p++) >= (*q++) ? (*p++) : (*q++));

� This expansion increments either por q twice and probably 

returns an incorrect value.
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Inline Functions

� C99 added support for inline functions, similar to C++:

inline int larger_of(int x, int y) {

return x > y ? x : y;

}

� inline is a keyword in C99.
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Inline Functions

� A call to an inline function typically generates the code for the 

function body at the point of each call.

� For example, the expression:

larger = larger_of(*p, m);

generates code equivalent to:

larger = *p > m ? *p : m;

� Unlike a macro, an inline function always behaves like a function 

in that…
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Inline Functions

� A call to an inline function evaluates each argument exactly once.

� This avoids spurious side effects.

� For example, the call expression:

larger = larger_of(*p++, *q++);

translates into something like:

{

int temp1 = *p++;

int temp2 = *q++;

larger = temp1 > temp2 ? temp1 : temp2;

} // temp1 and temp2 are no longer in scope

33

Inline Functions

� An inline function also behaves like a function in that…

� A program can take the address of an inline function.

� For example, this forces the compiler to generate a non-inline 

copy of larger_of:

int (*pf)(int, int) = &larger_of;

� Calls through pfwon’t expand the function body inline.

� However, calls using larger_of as the function name should 

continue to expand inline.
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Inline Functions

� With non-inline functions that have external linkage, you 

typically declare the function in a header:

// my_lib.h

int larger_of(int x, int y);    // do this

� You typically define it in an associated source file:

// mylib.c

int larger_of(int x, int y) {   // do this as well

return x > y ? x : y;

}

35

Inline Functions

� What happens if you define a non-inline external function in a 

header?

// my_lib.h

int larger_of(int x, int y) {   // don't do this

return x > y ? x : y;

}

� If you call that function from more than one source file, then 

you’ll get a link error when you try to link the resulting object 

files together.

� The linker will complain that the function is multiply-defined.
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Inline Functions

� In contrast, you should define, not just declare, an inline external 

function in a header:

// my_lib.h

inline int larger_of(int x, int y) {    // do this

return x > y ? x : y;

}

� A compiler can’t expand a function call inline unless it has seen 

the function definition (not just a declaration) prior to the call.

37

Inline Functions

� If necessary, a C99 compiler automatically generates a non-inline 

copy of an inline function…

� …but you must decide beforehand where that non-inline copy 

will go.

� You do this by declaring, but not defining, the inline function in 

some source file, as in:

// larger_of.c

#include "larger_of.h"

int larger_of(int, int);        // do this as well
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Inline Functions

� The keyword extern is optional in the function declaration in the 

source file, as in:

int larger_of(int, int);    // OK

extern int larger_of(int, int); // OK

� The declaration may include the keyword inline, but only if the 

keyword extern is there, too:

extern inline int larger_of(int, int); // OK

� However, this is invalid:

inline int larger_of(int, int); // not OK

39

New Integer Types

� A boolean type:

� keyword _Bool

� additional support in <stdbool.h> (as described earlier)

� long long integer types

� signed and unsigned

� additional library functions, such as:

long long int atoll(char const *nptr);

long long int llabs(long long int j);

� additional library support, such as format specifiers:

printf("%lld\n", atoll(s));
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Complex and Imaginary Types

� C99 added support for the concept of complex numbers.

� In mathematics, a complex number can have the Cartesian 

(rectangular) form:

x + yi

� Here, x and y are real numbers and i is the imaginary unit such 

that:

i2 = -1

� C supports complex numbers in Cartesian form rather than in an 

alternative polar form, such as reiΘΘΘΘ.

41

Complex and Imaginary Types

� C supports three types with both a real part and an imaginary 

part:

� float _Complex

� double _Complex

� long double _Complex

� C also supports three types with only an imaginary part:

� float _Imaginary

� double _Imaginary

� long double _Imaginary

� The imaginary types are optional.

� Compilers need not implement them.
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Complex Arithmetic

� The complex types support:

� the arithmetic operators +, -, *, and /

� the equality operator == and !=

� the simple assignment operator =

� the compound assignment operators +=, -=, *= and /=

� For example,

double _Complex z1, z2, z3, z4;

~~~

z4 = z1 * z2 + z3;

43

<complex.h>

� The standard header <complex.h> makes the complex and 

imaginary types a little easier to use.

� The header defines a pair of macros:

� complex, which expands to _Complex

� _Complex_I, which expands to a constant expression of type 

float _Complexwhose value is 0 + 1i

� If the compiler implementation supports imaginary types, then 

the header also defines macros:

� imaginary, which expands to _Imaginary

� _Imaginary_I, which expands to a constant expression of type 

float _Imaginary whose value is 1i.
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<complex.h>

� The header also defines another macro:

� I, which expands to a representation of i.

� If the implementation supports imaginary numbers, then I

expands to _Imaginary_I.

� Otherwise, it expands to _Complex_I.

� For example, you can declare a complex number, z, with double 

precision whose initial value is 8 + 6i using:

#include <complex.h>

~~~

double complex z = 8 + 6 * I;

45

Complex Arithmetic

� C permits implicit conversion from real types (float, double, and 

long double) to complex types.

� The imaginary part of the resulting complex value is always zero.

� Implicit conversion from complex to real discards the imaginary 

part.

� For example,

double r = 42;

double _Complex z1 = r;     // z1 = 42 + 0 * I;

z1 += 3 * I;                // z1 = 42 + 3 * I;

double d = z1;              // d = 42;
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<complex.h>

� <complex.h> provides functions that explicitly return the real and 

imaginary parts of a complex number, as in:

#include <complex.h>

~~~

double complex z = 8 + 6 * I;

printf("%g + %gi\n", creal(z), cimag(z));

� The output is:

8 + 6i

� The header also provides trigonometric, hyperbolic, exponential, 

logarithmic, and other functions for complex operands.

47

Exact-Width Integer Types

� C has always allowed each compiler to choose the storage size 

and range of values of each integer type.

� For years, C programmers have been defining their own exact-

width types, such as:

typedef char sint8;             // 8-bit signed int

typedef unsigned long uint32;   // 32-bit unsigned int

� You don’t need to define these yourself (anymore).

� C99 provides a standard set of such typedefs in <stdint.h>…

48



"New" Features in C

Copyright © 2015 by Daniel Saks 25

Exact-Width Integer Types

� <stdint.h> defines exact-width integer types such as:

� int8_t— a signed integer exactly 8 bits wide

� uint8_t— an unsigned integer exactly 8 bits wide

� int16_t— a signed integer exactly 16 bits wide

� uint16_t— an unsigned integer exactly 16 bits wide

� …and so on for 32 and 64

� However, these types are optional.

� These types are widely, but not universally, available.

� For example, the smallest addressable unit on a processor might 

be a 32-bit word.

� In that case, <stdint.h> can’t provide valid definitions for  int8_t

and int16_t and their unsigned companions.

49

Minimum-Width Integer Types

� Fewer programmers know about and use the minimum-width 

types in <stdint.h>, such as:

� int_least8_t — the smallest signed integer type that’s at least 

8 bits wide

� uint_least8_t — the smallest unsigned integer type that’s at 

least 8 bits wide

� int_least16_t — the smallest signed integer type that’s at 

least 16 bits wide

� uint_least16_t — the smallest unsigned integer type that’s at 

least 16 bits wide

� …and so on for 32 and 64.

� These types are required.

� These types may satisfy your needs, and may be more portable.
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Fastest Integer Types

� Also available are:

� int_fast8_t — the fastest signed integer type that’s at least 8 

bits wide

� uint_fast8_t — the fastest unsigned integer type that’s at 

least 8 bits wide

� int_fast16_t — the fastest signed integer type that’s at least 

16 bits wide

� uint_fast16_t — the fastest unsigned integer type that’s at 

least 16 bits wide

� …and so on for 32 and 64.

� These types are also required.

� In some cases, one of these types is what you really want.

51

Other Extended Integer Types

� <stdint.h> defines greatest-width integer types:

� intmax_t is a signed integer type that can hold the value of any 

signed integer.

� uintmax_t is an unsigned integer type that can hold the value 

of any unsigned integer.

� These types are required.
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Other Extended Integer Types

� <stdint.h> might define integer types capable of holding pointers 

to objects (not pointers to functions):

� intptr_t is a signed integer that can hold the value of a pointer 

to an object.

� uintptr_t is an unsigned integer that can hold the value of a 

pointer to an object.

� These types are optional:

� <stdint.h> can’t provide intptr_t on a platform where:

sizeof(void *) > sizeof(intmax_t)

53

Variable-Length Arrays (VLAs)

� This declares x to be an “array with n elements of T”:

T x[n];

� In C90, the array dimension, n, must be a constant expression.

� That is, the compiler must be able to determine n’s value at 

compile time.

� C90 rejects this declaration unless n is a constant.
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Variable-Length Arrays (VLAs)

� In C90, if you want to create an array with a dimension computed 

at run time, you typically do something like:

void f(size_t n) {

int *x = malloc(n * sizeof(int));

for (size_t i = 0; i < n; ++i) {

// do something with each x[i]

}

free(x);

}

� You have to remember to call free to avoid a memory leak.

55

Variable-Length Arrays (VLAs)

� Using this technique with multi-dimension arrays is 

cumbersome:

void f(size_t m, size_t n) {

int *x = malloc(m * n * sizeof(int));

for (size_t i = 0; i < m; ++i)

for (size_t j = 0; j < n; ++j) {

// do something with each x[n * i + j]

}

free(x);

}

� This is easy to get wrong.
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Variable-Length Arrays (VLAs)

� C99 introduced variable-length arrays (VLAs) to simplify using 

arrays with non-constant dimensions:

void f(size_t m, size_t n) {

int x[m][n];                // a VLA

for (size_t i = 0; i < m; ++i)

for (size_t j = 0; j < n; ++j) {

// do something with each x[i][j]

}

}

� With a VLA, you don’t need malloc and free to manage the array 

storage.

57

Variable-Length Arrays (VLAs)

� VLAs can be parameters:

void f(size_t m, size_t n, int x[m][n]) {

for (size_t i = 0; i < m; ++i)

for (size_t j = 0; j < n; ++j) {

// do something with each x[i][j]

}

}

int main() {

int a[6][8];

~~~

f(6, 8, a);

~~~

}
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Variable-Length Arrays (VLAs)

� If x is a VLA , sizeof(x) is not a constant expression.

� That is, it may not be computable at compile time.

� If x is anything other than a VLA, sizeof(x) is a constant 

expression.

� A VLA declaration can appear only in:

� a function parameter list, or

� a function body.

� A VLA can’t be declared extern or static.

� Interestingly,

� In C99, VLAs are a required feature.

� In C11, VLAs are merely optional.
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Flexible Array Members

� Suppose you need to build packet-like structures with:

� a fixed-format header, and

� a trailing variable-length data sequence.

� Unfortunately, you can’t use a VLA:

typedef struct packet packet;

struct packet {

header h;

data d[n];      // No: n must be constant expression

};

� VLAs can’t be structure members.
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Flexible Array Members

� The conventional approach in C90 is to define the data portion of 

the packet as an array whose dimension is 1:

typedef struct packet packet;

struct packet {

header h;

data d[1];

};

� To allocate storage for a packet with ndata values, you might try:

packet *p = malloc(sizeof(header) + n * sizeof(data));

� However, this might not work…

61

Flexible Array Members

� There might be padding within the structure:

struct packet {

header h;           might be padding in there

data d[1];

};

� In that case, computing the packet size is more complicated:

packet *p

= malloc(offsetof(packet, d) + n * sizeof(data));

� offsetof(t, m) (defined in <stddef.h>) returns the offset in bytes 

of member m from the beginning of structure type t.
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Flexible Array Members

� In C99, the last member of a structure can be an array with 

unspecified dimension:

typedef struct packet packet;

struct packet {

header h;

data d[]; // OK in C99: flexible array member

};

� Such a member is called a flexible array member.

63

Flexible Array Members

� The size of a structure with a flexible array member is:

� the size of everything in the structure,

� including any padding,

� up to but not including the flexible array member.

� Using a structure with a flexible array member simplifies 

memory size computations:

packet *p = malloc(sizeof(packet) + n * sizeof(data));
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Compound Literals

� A literal is a programming language construct that represents a 

fixed or invariant value.

� For example, "xyzzy" is a string-literal.

� In C90, if you want a fixed value of a structure type, you have to 

create a named constant object:

typedef struct rational rational;

struct rational {

long num, den;

};

~~~

rational const one_half = { 1, 2 };

rational const one_third = { 1, 3 };

65

Compound Literals

� In C99, you can use a compound literal to represent a fixed value 

of a structure type:

typedef struct rational rational;

struct rational {

long num, den;

};

bool rat_eq(rational lo, rational ro) {

return (lo.num == ro.num) && (lo.den == ro.den);

}

rational r;

~~~

if rat_eq(r, (rational){ 1, 2 }) {  // compound literal 

~~~

}
66
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Compound Literals

� A compound literal can have an array type:

enum { m = 7 }

enum { n = m * sizeof(int) };

int d[m];

~~~

if (memcmp(d, (int [m]) { 8, 6, 7, 5, 3, 0, 9 }, n) == 0)

~~~
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Compound Literals

� A compound literal type can specify an array of unknown 

dimension.

� In that case, the length of the brace-enclosed list determines the 

array dimension:

if (memcmp(d, (int []) { 8, 6, 7, 5, 3, 0, 9 }, n) == 0)

~~~

7 elements
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Designated Initializers

� In C90, a brace-initializer for a union can initialize only the first 

member:

typedef union glop glop;

union glop {

int i;

double d;

};

glop g1 = { 10 };       // initializes g1.i with 10

glop g2 = { 12.3 };     // initializes g2.i with 12

� The first member, i, is an int.

� The compiler converts 12.3 from double to int by discarding .3.

� The truncation might trigger a warning.
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Designated Initializers

� C99 lets you initialize any member of a union by using a 

designated initializer:

typedef union glop glop;

union glop {

int i;

double d;

};

glop g1 = { .i = 10 };      // initializes g1.i with 10

glop g2 = { .d = 12.3 };    // initializes g2.d with 12.3
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Designated Initializers

� You can use designated initializers with structures to avoid 

accidentally writing initial values in the wrong order:

typedef struct date date;

struct date {

int d;

month m;

int y;

};

date flub = {

Nov, 5, 1955                    // oops! wrong order

};

date flux = {

.m = Nov, .d = 5, .y = 1955 // OK: no mistake

};
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Designated Initializers

� You can also use designated initializers with arrays.

� This is especially convenient when you want to:

� initialize only a few elements and

� let the other elements default initialize to zero.

� For example, these two definitions are equivalent:

int x[10] = { 0, 0, 0, 8, 0, 0, 0, 2 };

int x[10] = { [3] = 8, [7] = 2 };

� The latter initializer is easier to get right.
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Restricted Pointers

� In C90, <stdlib.h> declared the standard strcpy function as:

char *strcpy(char *s1, const char *s2);

� In C99, the declaration looks like:

char *strcpy(char *restrict s1, const char *restrict s2);

� As with const and volatile, the keyword restrict is a type 

qualifier.

� However, restrict can apply only to:

� pointers to object types, or

� pointers to incomplete types.

73

Restricted Pointers

� Pointer aliasing occurs when a program uses two or more 

pointers to access the same storage.

� The potential for pointer aliasing inhibits optimizations such as:

� caching memory into CPU registers, or

� reordering memory accesses.

� Declaring a pointer with restrict enables such optimizations.

� For example…
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Restricted Pointers

� In C99, memcpy’s pointer parameters are restrict-qualified:

void *memcpy(

void *restrict s1, const void *restrict s2, size_t n

);

� memmove’s pointer parameters are not:

void *memmove(void *s1, const void *s2, size_t n);

� The compiler may assume that memcpy is copying between non-

overlapping objects, and optimize code accordingly.

� It may not do so for memmove.
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Type-Qualified Array Parameters

� Except when it has a non-constant dimension, an array 

declaration in a parameter list dimension actually declares a 

pointer.

� That is,

int f(T x[]);           // x is a "pointer to T"

means the same as:

int f(T *x);   // x is a "pointer to T"

� If the first array dimension is present and constant, the 

dimension is simply ignored.
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Type-Qualified Array Parameters

� The transformation to pointer type preserves type qualifiers, if 

present.

� For example,

int f(T const x[]); // x is a "pointer to const T"

int g(T volatile y[]);  // y is a "pointer to volatile T"

means the same as:

int f(T const *x);    // x is a "pointer to const T"

int g(T volatile *y);   // y is a "pointer to volatile T"
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Type-Qualified Array Parameters

� In C90, there’s no way to declare an array parameter that’s 

equivalent to a pointer parameter with a top-level type qualifier.

� That is, in C90 you can declare:

int f(T *const x);    // x is a "const pointer to T"

int g(T *volatile y);   // y is a "volatile pointer to T"

� However, C90 offers no way to write this using array notation.

� In C99, you can declare the functions as:

int f(T x[const]);      // x is a "const pointer to T"

int g(T y[volatile]);   // y is a "volatile pointer to T"
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Type-Qualified Array Parameters

� In practice, declaring parameters with top-level const or 

volatile qualifiers is not all that useful:

int f(T x[const]);      // not all that useful

int g(T y[volatile]);   // not all that useful, either

� However, declaring array parameters with top-level restrict

qualifiers is useful:

int f(T x[restrict]);   // useful

� It’s equivalent to:

int f(T *restrict x);   // useful
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__func__

� C99 provides a predefined identifier, __func__.

� It’s not a macro.

� Within each function body, it’s an implicitly declared object.

� Its value is the function name as a null-terminated character 

sequence.

� It’s as if the following declaration appeared immediately after the 

opening brace in each function definition:

static char const __func__[] = "function-name";

� __func__ can appear only inside a function definition.

� For example, you can use __func__ to implement simple function 

call tracing…
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__func__

#define enter() printf("enter: %s\n", __func__)

#define leave() printf("leave: %s\n", __func__)

void foo() {

enter();

~~~

leave();

}

void bar() {

enter();

~~~

leave();

}
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C11 vs. C99

� Compared to C99, C11 adds many fewer features.

� Your compiler might not implement all of them yet.

� Here’s a sampling of some features that are already available 

somewhere…
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Conditional Features

� C11 classifies certain features as conditional.

� A compiler need not implement a conditional feature.

� Moreover, the compiler must define a standard object-like macro 

to indicate that it doesn’t implement the feature.

� For example, these macros include:

� __STDC_NO_COMPLEX__

� If this macro is defined, the implementation doesn’t support 

complex types or the <complex.h> header.

� __STDC_NO_VLA__

� If this macro is defined, the implementation doesn’t support 

variable length arrays.
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Anonymous Structures and Unions

� Suppose your application employs two-dimensional shapes.

� Each shape contains some linear or angular distances that 

characterize the physical extent of the shape:

� a circle has a radius

� a rectangle has a height and a width

� a triangle has side1, side2 and an angle

� etc.

� The shapes may also have common attributes, such as:

� position (planar coordinates)

� outline and fill colors
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Anonymous Structures and Unions

� Here’s a fairly traditional C implementation of the shape type:

typedef struct shape shape;

struct shape {

coordinates position;

color outline, fill;

shape_kind kind;        // discriminator

union {                 // discriminated union

circle_part circle;

rectangle_part rectangle;

triangle_part triangle;

} u;                    // union member name

};
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Anonymous Structures and Unions

� A union paired with a value that indicates the active member of 

the union is called a discriminated union.

� The discrete value is called a discriminator.

� In C90, the union member (on the previous slide) must have a 

name.

� We don’t need the name other than to make the compiler happy.

� So we usually give it a short name, such as u.

� Still, it clutters up the code, as in…
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Anonymous Structures and Unions

double shape_area(shape const *s) {

switch (s->kind) {

case sk_circle:

return PI * s->u.circle.radius

* s->u.circle.radius;

case sk_rectangle:

return s->u.rectangle.height

* s->u.rectangle.width;

case sk_triangle:

return sin(s->u.triangle.angle)

* s->u.triangle.side1

* s->u.triangle.side2 / 2;

}

return -1;

}
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Anonymous Structures and Unions

� C11 now permits anonymous structures and unions as structure 

or union members:

struct shape {

~~~

shape_kind kind;

union {                 // anonymous union

circle_part circle;

~~~

};                      // no union member name

};

� You can reference members of an anonymous structure or union 

as if they were members of the enclosing structure or union…
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Anonymous Structures and Unions

double shape_area(shape const *s) {

switch (s->kind) {

case sk_circle:

return PI * s->circle.radius * s->circle.radius;

case sk_rectangle:

return s->rectangle.height * s->rectangle.width;

case sk_triangle:

return sin(s->triangle.angle)

* s->triangle.side1 * s->triangle.side2 / 2;

}

return -1;

}

� The wavy underline indicates where u.used to be.
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Alignment Support

� Multibyte objects often have an alignment.

� The C Standard defines alignment as a:

� “requirement that objects of a particular type be located on 

storage boundaries with addresses that are particular 

multiples of a byte address”.

� Each target processor specifies its own alignment requirements.

� 4-byte integers and pointers are often “word aligned” (at an 

address that’s a multiple of 4).

� 8-byte floating point numbers might be:

� word aligned, or

� double-word aligned (at an address that’s a multiple of 8).
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Alignment Support

� A program that accesses a misaligned object produces undefined 

behavior.

� Possible outcomes include:

� the processor issues a trap, or

� the program executes properly, but more slowly than if the 

data were properly aligned.

� An object whose address requirement is a higher multiple than 

another is said to have a stricter alignment.

� For example, double-word (=8) alignment is stricter than word 

(=4) alignment.

� Character objects always have a size of 1 (by definition).

� They have no alignment requirement.
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Alignment Support

� For some tasks, it helps to have a type that’s as strictly aligned as 

any on the current platform.

� Here’s a common C99 way to define that type:

typedef union max_align_t max_align_t;

union max_align_t {

long long int lli;

long double ld;

void *pv;

void (*pfvv)(void);

};

� C11 now defines max_align_t for you in <stddef.h>.
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Alignment Support

� Again, character types have no alignment requirement.

� This could be aligned on any boundary:

char buffer[BUFSIZ];

� If you want to align the buffer to a particular boundary, you can 

declare it as a member of a union with an aligned member:

union {

int i;                  // force word alignment

char buffer[BUFSIZ];

} aligned;
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Alignment Support

� To simplify alignment operations, C11 provides two new 

keywords, _Alignas and _Alignof.

� Standard header <stdalign.h> makes them look nicer:

#define alignas _Alignas

#define alignof _Alignof
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Alignment Support

� alignof is an operator much like sizeof.

� alignof(T) yields an integer constant whose value is the 

alignment of type T:

� Tmust be a complete object type.

� The alignment of an array is the alignment of its element type.

� For example, here’s how you can advance a “pointer to char” to 

the next address aligned for accessing an int:

char *p;

~~~

while ((uintpr_t)p % alignof(int) != 0)

++p;
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Alignment Support

� Whereas alignof is an operator for use in expressions…

� alignas is a specifier for use in declarations.

� For example, this declares a character array aligned as an int:

alignas(int) char buffer[BUFSIZ];

� You can also specify the alignment as an integer constant.

� The above declaration is equivalent to:

alignas(alignof(int)) char buffer[BUFSIZ];
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Alignment Support

� The standard header <stdlib.h> declares memory allocation 

functions:

void *calloc(size_t number, size_t size);

void *malloc(size_t size);

void *realloc(void *pointer, size_t size);

� If a call to any of these functions succeeds, it returns a pointer 

whose value is aligned so that:

� it may be assigned to a pointer to any type of object, and

� it may be used to access such an object or an array thereof in 

the space allocated.

� In practice, it usually means the returned pointer has a value 

aligned to max_align_t.
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Alignment Support

� In C11, <stdlib.h> also declares:

void *aligned_alloc(size_t alignment, size_t size);

� This function lets you allocate storage at an alignment that’s 

stricter than max_align_t, as in:

char *p = aligned_alloc(256, 4096);

� This allocates 4096 byes on a 256-byte boundary.
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Alignment Support

� In general, a call to aligned_alloc has the form:

aligned_alloc(A, S)

� It allocates storage of size S aligned to boundary A.

� The behavior is undefined if:

� A isn’t a valid alignment supported by the implementation, or

� the S isn’t an integral multiple of A.
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Non-Returning Functions

� Some functions never return to their caller.

� C11 provides the keyword _Noreturn to declare such functions.

� The standard header <stdnoreturn.h> makes it look a little nicer:

#define noreturn _Noreturn

� For example, the standard library now declares the abort and 

exit functions as:

_Noreturn void abort(void);

_Noreturn void exit(int status);
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Non-Returning Functions

� Using noreturn has these advantages:

� It suppresses compiler warnings on functions that don’t 

return.

� It enables some optimizations.

� The compiler should complain if a function declared with 

noreturnmight return nonetheless.

� For example, this might return if status is nonnegative:

noreturn void bail(int status) {

if (status < 0) {

// do some cleanup

exit(EXIT_FAILURE);

}

}
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Static Assertions

� The assertmacro is defined in the standard header <assert.h>.

� Calling assert(e) expands to code that tests the value of 

expression eat run time:

� If e is true (non-zero):

� nothing happens.

� If e is false (zero), the program:

� writes a diagnostic message to stderr, and

� aborts execution by calling the standard abort function.
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Static Assertions

� For example, suppose you have an enumeration type defined as:

enum rating { worst, poor, okay, good, best };

� Suppose the program assumes that the range from worst to best

doesn’t exceed 7.

� Violating that constraint could lead to a subtle bug.

� Rather than let the program fail in some subtle way, you can force 

an overt failure:

assert(best - worst <= 7);
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Static Assertions

� With most compilers, an assert failure message looks something 

like:

assert failed: condition, file file.c, line n

� assertwrites to stderr.

� It may be useless in environments that lack support for the C file 

system.

� However, you can “roll your own” version of assert:

� Copy the macro from <assert.h> to your own header.

� Change the way it reports the failure.
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Static Assertions

� Again, this assertion catches the constraint violation:

assert(best - worst <= 7);

� However:

� It executes at run time.

� It should be done at compile time.

� An assert call is an executable expression.

� It can appear only within a function.
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Static Assertions

� Not every assertion can be checked statically (at compile time).

� An assertion that tests the value of a variable must be done 

dynamically (at run time).

� However, an assertion that tests the value of a constant 

expression can be done at compile time.

� For example, these can be tested statically:

� the size or alignment of an object

� the offset of a structure member

� the value of an enumeration constant
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Static Assertions

� C11 adds the keyword _Static_assert to support static 

assertions.

� A static_assert-declaration has the form:

_Static_assert(e, s);

� If constant expression e converted to _Bool is true, the 

declaration has no effect.

� Otherwise, the compiler generates a diagnostic message 

containing string literal s, and the program fails to compile.

� A static_assert-declaration is a declaration.

� It can appear anywhere that any other declaration can appear.
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Static Assertions

� The standard header <assert.h> provides a macro that makes 

static assertions more pleasing to the eye:

#define static_assert _Static_assert

� For example, you can test the range of the enumerators using a 

static assertion such as:

static_assert(

best - worst <= 7,

"best shouldn't be more than 7 greater than worst"

);
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No More gets

� Nearly all the differences between C11 and C99 are features that 

C11 added.

� However, C11 did remove one function from the standard library.

� In C11, <stdio.h> no longer declares:

char *gets(char *s);

� The function was just too unsafe:

� It could easily cause an undetected buffer overrun.

� In place of gets, use:

char *fgets(

char *restrict s, int n, FILE *restrict stream

);
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